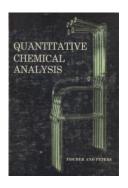
ANALYSIS

Online Process Control using Modular Fluid Delivery and Fast Process Gas Chromatography: From the Sample Point to the DCS Connection

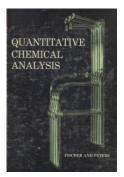


Quantitative Chemical Analysis

Fischer and Peters, Third Addition - August, 1968, page 3

The Methods of Quantitative Analysis

- "A complete quantitative determination generally consists of four major steps:
 - Obtaining a sample for the analysis
 - Separation of the desired constituent in a measurable form
 - Measurement and calculation of the results
 - · And drawing conclusions from the analysis."



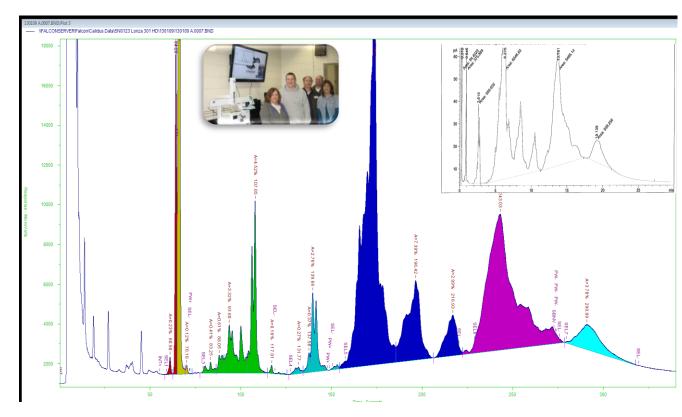
Quantitative Chemical Analysis

Fischer and Peters, Third Addition - August, 1968, page 10

Sampling

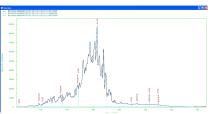
- "In practical situations, however, obtaining a sample suitable for analysis is often a source of major difficulty and frequently limits the validity of the final result."
- Thus... NeSSI
 - But it isn't a magic bullet!

Modern Analyses, Legacy Baggage


- Product Certificate of Analysis (C of A) Requirements
 - Contracts require continuity when implementing new analysis technology
 - Results based on decades old methods were still desired by the customer and... therefore the supplier
 - Older technology limited analytical improvements and process improvements
- Requirements for moving forward
 - Composition analysis for composition control in line with legacy C of A
 - Fast analysis
 - Complete automation
 - Results "the same as before" or at least correlating to C of A

An Example: Food Grade Fatty Acid Boiling Range Distribution for Batch Process Endpoint Determination

Legacy lab method


- Completely manual
 - Sample prep
 - Syringe injections
 - Manual integration meeting C of A requirements
- NOTE strange baseline assignments
- Modern process method
 - Automated
 - Manual derivatization
 - Automatic injection
 - Automatic integration, C# distribution & report
 - NOTE fully automated baseline assignments

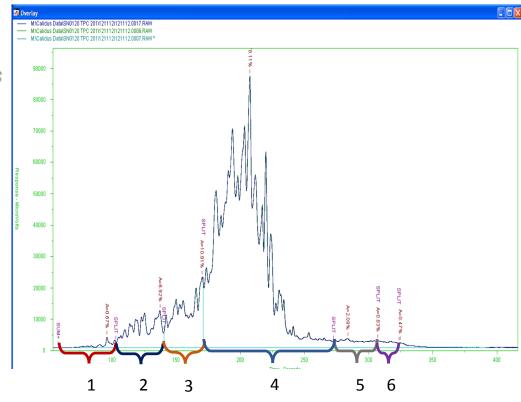
The Problem: Three Olefin Process Streams

- Historically controlled by plant laboratory analysis
 - Using GC/MS technique producing the C of A
 - Results discontinuous and no better than one per four hours
 - Controls from T, P & F... running nearly compositionally blind
- Requirements for moving forward
 - Online, representative, repeatable sampling
 - Fast analysis
 - Full automation from sample tap to the DCS connection
 - Results "the same as before" using more realistic process GC/FID analysis

The Solution: NeSSI, Fast GC, Smart SW

- Feasibility testing was done on all three olefin streams
 - Plant support lab demo unit was installed next to the GC/MS
 - Three month data comparison campaign demonstrated probable correlation
 - Fixed retention time based "cuts" were required on normalized, aligned chromatograms leading to the next step
 - Methods development for all 3 olefin process streams
 - Repeatability determination as well as correlation with C of A
 - Demonstrate integrated alignment and process analyzer control SW
- The results...

All testing demonstrated a high probability of successful implementation



Example Initial Chromatographic Results

Separation

- Resolution is excellent
- Run time shown is about 400 seconds
 - Later reduced to 5 minute cycles on two streams
 - The 3rd was optimized at 3 minutes
- Fixed retention time cuts required
 - Lots of olefinic isomers
 - Cuts shown using area normalized calculations matched GC/MS data
 - Retention time variance cannot be tolerated using normalized area %s
- The project moved forward

Final Chromatography for 3 Olefin Streams

• The products are

• Low boiler

• Intermediate boiler

• High boiler

• Optimized cut points

• Area normalized

• Pure retention time based using LineUp

• Correlates well with

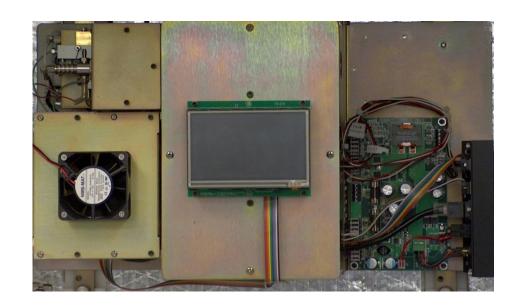
C of A

Results: a good

control tool!!!

250 sec

System Overview: 3 Sided Shelter, NeSSI on Back


Modular Simplicity: Sampling & Instrument

Modular single stream NeSSI with auto-validation

Modular single valve, single column, single detector analyzer

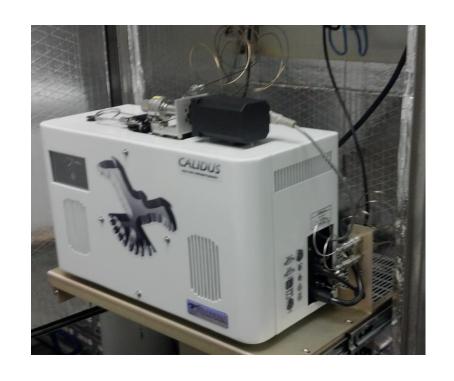
Modular Simplicity: Analyzer & Systems

Process Analyzer Module

Three Sided Shelter

Modular Simplicity: Calidus Process Analyzer

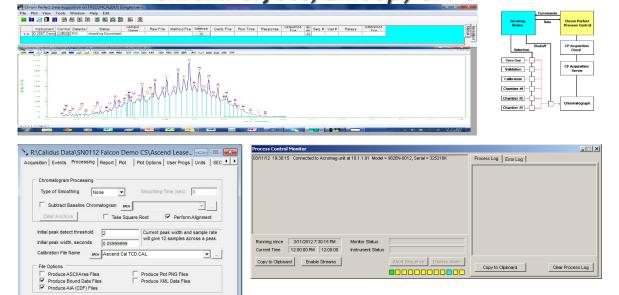
Plug & Play Calidus Instrument


 The GC is simply a normal Calidus model secured to the slide out tray.

Connection Facilities

 Quick connections on the right side utility panel enables complete Calidus GC modules (models) to be removed and replaced with a backup system.

Enclosure Safety


 NEC Class 1, Division II, Groups C & D via Z-Purge.

Modular Simplicity: Software & DCS Reporting

Modular Analyzer Control Software: ChromPerfect, LineUp, CPPC

MODBUS Computer Communications

Simple: Trouble free. Even I can do it? Not so fast!

- This isn't the sample point
 - 3 process sample points
 - 3 sample probes
 - 3 sample pumps
 - 3 process pumps... right?
- Wrong!
 - Each stream has 2 process pumps
 - One each is in service
 - One each is in maintenance
 - There are really 6 process pumps
 - Each stream has a shut off valve network enabling flow
 - Discharge and/or
 - Suction

info@falconfast.net

Copyright Falcon Analytical 12/14/2015

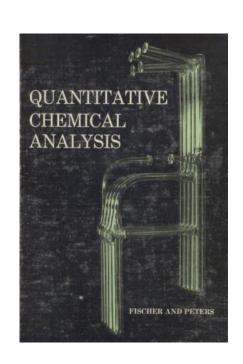
433 AEI Drive - Lewisburg, WV 24901

15

From the Sample Point to the DCS Connection

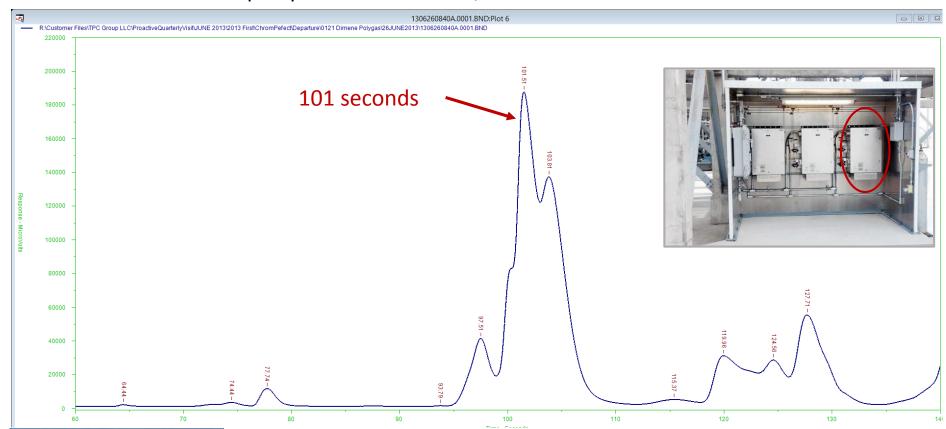
Sample system includes

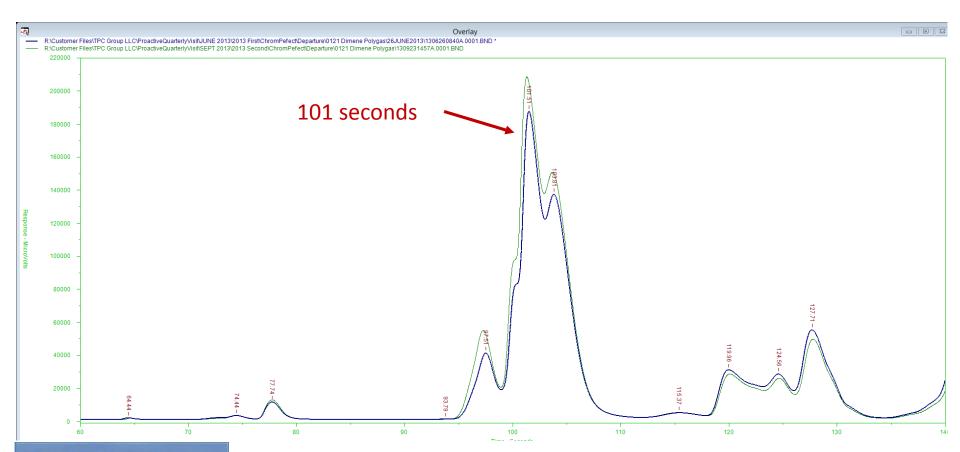
- Process pumps
 - Valve network
 - Transport tubing to the shelter
- Booster pumps at the shelter
 - Transport tubing back to process pumps
 - Valve network
- It also includes proper operations
 - The valve networks can be set for
 - Reverse flow to the shelter
 - Backwards operations
 - Instead of forward flow... it happened

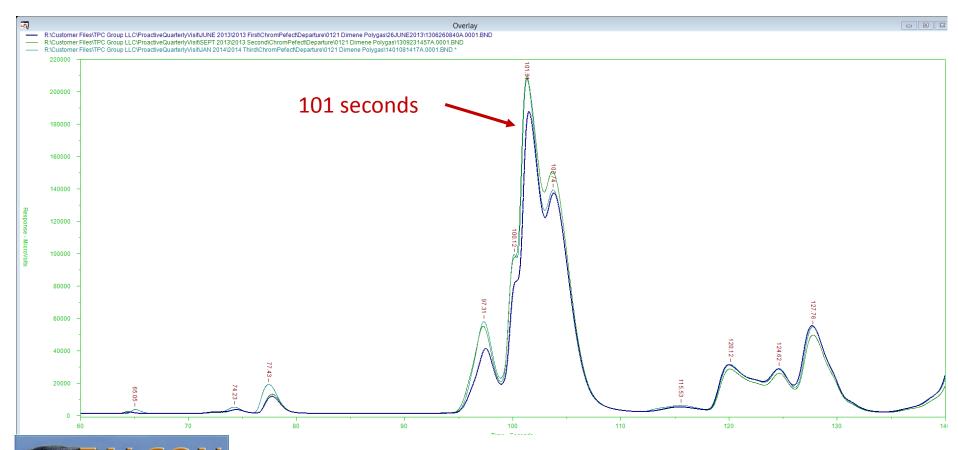


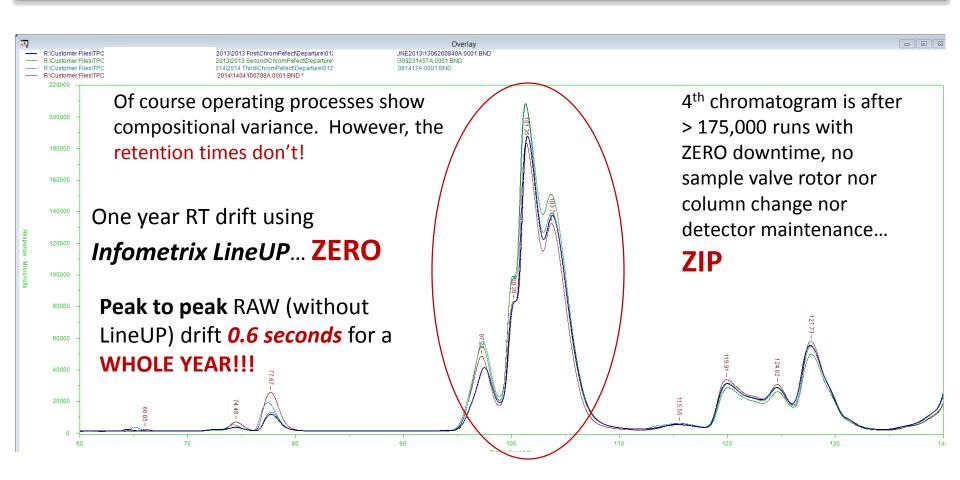
The Sentence Preceding "however"

Sampling


- "Therefore, the analyst seldom needs to be concerned in his laboratory work with the operation of sampling. In practical situations, however, obtaining a sample suitable for analysis is often a source of major difficulty and frequently limits the validity of the final result."
- In Process Analytical Chemistry, everyone must be concerned with sampling! Even process operating personnel.


•So what are the results?


Q1 Visit: part of last run showing 60 to 140 seconds – Retention time alignment by Infometrix LineUp implemented – dimer, trimer & tetramers of olefinics


Q1 & 2 Visits Overlaid: part of last run showing 60 to 140 seconds

Q1, 2 & 3 Visits Overlaid: part of last run showing 60 to 140 seconds

Q 1, 2, 3 & 4 Visits Overlaid: part of last run showing 60 to 140 seconds

Modular Intraflow NeSSI, Modular Calidus GC, Modular Calidus Process Analyzer

 With attention to the details, trouble free results can be achieved!
 Questions?