Data Processing in a Fast GC World The case for unattended multivariate analysis

"We want reliable, intelligent answers driven by analytical technologies that are not perfectly reliable or intelligent."Lloyd Colegrove, Dow Chemical IFPAC 2013

Brian Rohrback, Infometrix, Inc, Bothell, WA Gulf Coast Conference October 15, 2014

Two Ways to Use Chromatography

I. Quantitative Analysis

- Provide a means of accurately quantitating a small number of compounds.
- Predicting a physical property or system parameter
- Unbundling a mixture
- 2. Qualitative Analysis
 - Evaluate a pattern of components to determine if the mixture is within specifications.

Another role for chemometrics

With the increase in speed, we need to automate the assessment of the chromatographic data such that samples behaving normally are accepted, but any problem is noted whether it be

- a raw material input deficiency,
- a process problem, or
- an instrument problem

Re-thinking Chromatography

- 35 years ago, fused silica made GC more useful by quintupling the number of technicians that could be independent running chromatographic equipment in non-trivial applications.
- I believe chemometrics combined with fast GC is generating a fundamental change in how we deploy GCs.
 - Simplifying Calibration
 - Process Control
 - Global Databases

Processing Whole Chromatograms

- Chromatograms will show an x-axis (retention time) shift for a variety of reasons:
 - Changing columns
 - Aging columns
 - Different instruments
 - Degradation of the column over time
- We need to eliminated the retention time variability to improve the precision of the assessments.

Retention Time Misalignment is a General Chromatography Problem

Gas Chromatography: 2 Instruments

Alignment via Software

nfometrix

 Original chromatograms often show large variation in retention pattern; aligned chromatograms do not

PCA model from aligned profiles

 Each evaluation will have a two qualifiers, one for inmodel consistency and one to monitor out-of-model variation. These can be used to construct, for example, a warning limit (95% confidence interval) and an failure limit (99% confidence interval)

Why Chemometrics?

	Х	Y						
1	0.230	0.390						
2	0.218	0.340						
3	0.223	0.359						
4	0.217	0.335						
5	0.229	0.385						
6	0.220	0.348						
7	0.225	0.370						
8	0.226	0.375						
9	0.216	0.328						
10	0.214	0.321						
11	0.226	0.374						
New	0.219	0.378						

X

Delivering Information

Just having the measurements does not translate into control

- There are not enough skilled technicians to handle even the current workload.
- Chemometrics solves the information processing problem with two technologies:
 - Alignment enables us to sell instruments that have vastly-lower calibration requirements.
 - Interpretation algorithms automates the generation and the qualification of the information derived from the raw data.

And if we can make all of our instruments look as much alike as possible.

Interchangeability Common interpretive base

Repeatability of a Process-Based Micro GC

Repeatability of a Process-Based Micro GC

Right: expansion from 0.4 to 0.6 min.

Infometrix

- 62 3

Building a PCA Model

- For each fraction, a subset of training data was created using Kennard & Stone algorithm, then PCA was run
- PCA Scores from aligned profiles indicate a reasonably homogeneous data set

	Variance	Percent	Cumulative	
Factor I	0.202	74.389	74.389	
Factor2	0.024	8.864	83.253	
Factor3	0.011	4.014	87.267	
Factor4	0.008	2.950	90.217	
Factor5	0.006	2.180	92.397	
Factor6	0.004	1.435	93.832	
Factor7	0.003	1.191	95.023	
Factor8	0.003	0.971	95.994	
Factor9	0.002	0.722	96.716	
Factor 10	0.001	0.529	97.246	Factor 1 (74.4%) Factor 2 (8.9%)

Infometrix

15

Control Plot Showing Outliers

- If there are deviations from the expected range, we instantly identify the variables at fault
- A plot of training set with aberrant samples overlaid can show multiple causes simultaneously

Validating the PCA Model

- Samples of bonafide and adulterated samples were projected into PCA models for each fraction
- Peaks responsible for aberrant profiles were discovered with contribution plots

Good Sample

Model: C:\Program Files (x86)\Infometrix\Sativex Profiler\Database\Project Files\CBD\CBD_Cannabinoids\CBD_Cannabinoids_01.PMF

In-model Outlier

Out-of-model Outlier

Example: HRVOC Fence Line Analysis

	Quality	TINMHC	Ethane	Ethylene	Propane	Propylene	n-Butane	1-Butene	1,3. Butadiene	Pentane	1-Pentene	Isoprene	Hexane	1-Hexene	Heptane	Венzене
10-27-2005 12-26-53 pm_microfast 01_032.dat	Event	1198	0	3	0	0	5	0	0	8	0	1	1	0	0	1218
10-27-2005 2-14-07 pm_microfast 01_004.dat	Event	473	0	0	18	13	30	12	10	27	13	18	50	16	22	32
10-27-2005 2-54-00 pm_microfast 01_008.dat	Calibration	12744	491	487	492	488	977	489	488	987	493	499	1293	533	544	519
10-27-2005 2-34-04 pm_microfast 01_006.dat	Event	1547	58	67	53	52	105	52	51	111	56	56	174	78	78	74
10-27-2005 2-24-05 pm_microfast 01_005.dat	Event	477	21	22	19	13	29	13	14	30	14	12	52	4	22	28
10-27-2005 2-44-02 pm_microfast 01_007.dat	Event	4046	141	160	148	141	295	148	142	307	146	152	447	183	195	170
10-27-2005 3-13-55 pm_microfast 01_010.dat	N/A	207	0	0	0	3	8	4	5	15	1	2	21	7	12	18
10-27-2005 1-31-07 pm_microfast 01_003.dat	Flame out	47	4	0	1	1	0	0	0	1	0	1	0	0	0	0
10-27-2005 1-21-06 pm_microfast 01_002.dat	Flame out	49	0	0	0	0	0	0	0	0	2	1	1	0	1	0
10-27-2005 3-03-57 pm_microfast 01_009.dat	Calibration	25447	1005	1003	1004	1007	2012	1005	1007	2005	1003	0	2460	974	964	984
10-27-2005 7-26-55 am_microfast 01_003.dat	Background	110	36	0	12	0	7	0	0	5	1	1	0	0	3	8
10-27-2005 7-16-55 am_microfast 01_002.dat	Background	84	50	0	0	0	7	3	1	0	0	2	0	0	0	10
10-27-2005 7-06-54 am_microfast 01_001.dat	Background	89	31	3	13	0	7	0	2	4	1	10	0	0	0	9
10-27-2005 6-56-54 am_microfast 01_071.dat	Background	115	22	7	0	0	7	1	0	3	2	2	1	0	1	10
10-27-2005 6-46-55 am_microfast 01_070.dat	Background	72	23	0	9	0	6	0	1	0	0	3	5	0	2	12

Continuous data interpretation PLUS validation of a multivariate instrument

- We can correct retention times to match an applicationspecific relevant sample
- You can use this to make all instruments performing a similar task to look identical (Plug and Play)
- Common regression and classification algorithms can be applied automatically to infer physical properties or characteristics
- This allows us to bring more complex analyses into on-line use and creates the ability to automate an applicationspecific, objective evaluation system