

Fast HPLC Enables Online Process Analyzer Technology

Abstract # 148 Paper - 10/11/2016 - 2:10 PM - Room 380 A Ernie Hillier Principle Systems Manager Waters Corp

Agenda

- HPLC/UPLC Technology
 - Define: Speed/Sensitivity/Resolution
 - What does this all mean?
 - What is the impact?
- Online UPLC
 - How does it work?
 - What problem does it solve?
 - What is the impact?
- Case Study #1
 - Solving for time
 - Yield/Efficiency/Productivity
- Case Study #2
 - Process/Product Monitoring
 - Is the process under control?
 - Is the product good?
- Case Study #3
 - More tools & capability
 - Close loop connection & communication

ACQUITY UPLC[®] Speed – Timeliness of Information

Waters THE SCIENCE OF WHAT'S POSSIBLE.®

3

ACQUITY UPLC® Sensitivity – allowing for lower levels of detection

ACQUITY UPLC[®] Resolution ...more information, & higher quality data = better & faster decision making

Waters

MIT Study – Waiting for QC Testing

OVERALL CYCLE TIMES: QC TESTING TIMES ARE SIGNIFICANT

How to Move Liquid Chromatography into Process Monitoring

Waters

http://www.analyticjournal.de/glossar_beitraege_einzeln/pa_monitoring.html

How does the PATROL UPLC Online System Work?

8

Process Sample Manager (PSM): Pumps and Valves

ACQUITY UPLC 15 kpsi Fixed Loop Injection Valve

Process Valve used with the Process Pump (acts as the check valve for the Process Pump)

1000 psi Pressure Transducers for pumps Priming Valve used with both the Sample and Dilution Pumps

Sample Valve: directs the

Case Study #1

Workflow & Process Time Impact

PAT Assay Business Process

Waters THE SCIENCE OF WHAT'S POSSIBLE.

Time is the rate limiting step!

Genetic Engineering News March 10, 2010 Key Collaborator

Downstream Process Biopharmaceutical Purity Analysis

HPLC Analysis

- 40 minute chromatography
- 160L reprocessed at minimum
- Final recovery after reprocessing

9 Steps 80 Minutes

Downstream Process Biopharmaceutical Purity Analysis

HPLC Analysis

- 40 minute chromatography
- 160L reprocessed at minimum
- Final recovery after reprocessing

9 Steps 80 Minutes

Waters THE SCIENCE OF WHAT'S POSSIBLE."

UPLC Analysis

- ⇒ 3.5 minute chromatography
- No reprocessing required

4 Steps 5 Minutes

Case Study #2 - Part 1

Small Molecule Monitoring the Process and Product

Process issue – timeliness of understanding and fix (hours not days!!!)

On-line HPLC Process Control

Investigation into higher than expected impurity formation indicated hydrolysis of starting material within the process pump. Process pump cycle times were plotted vs. on-line HPLC data correlating observed area % of impurity with pump cycle times.

16

Reaction Characterization

On-line HPLC enables real time changes to process parameters to characterize reactions

Experiment time, hours from start of reagent pump

PATrol for Monitoring Continuous Thermal Tube Reactors – Steady State

Chiral Purity at Steady State

Case Study #2 – Part 2

Small Molecule Offline Vs Online Results Reliability & Robustness Impact

24-Day Continuous Hydrogenation

0

A Flow-Enabled Ir-Catalyzed Reductive Amination

<u>24 days of continuous operation</u> in a 380L plug flow tube reactor design in manufacturing.
Online HPLC used to monitor the reaction

<u>2 MT of 2524875 produced</u>
Crude profile shows 0.3-0.5% cis
>95% yield; >99.6% purity with 0.2% cis

<u>Superior safety profile</u> vs. batch STAB reaction
 Runs as a *low risk operation* Avoids storage and handling of STAB
 All Hydrogen is kept outside of the building .

Material Comparison in Reg. Stab. Campaign 983 kg STAB vs 1.1 kg Ir catalyst and 1.2 kg TBAI

 \diamond

Case Study #3

Tools for Large Molecule Closed loop communications & control

Expanding Large Molecule PAT Toolkit

Online LC case studies with PATROL

©2016 Waters Corporation

Summary

- Advances in separations technology allows for the expansion of tools in the Process space
- The increase in the amount of higher quality data available provides greater process understanding and knowledge about the process.
- The impact provides the business the following ways:
 - Higher yields
 - Faster ROI's
 - Raw materials costs
 - Personnel reduction
 - Space reduction
 - Utilization increases
- Expanded capabilities
- Closed Loop Communications & Control